If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-236x+358=0
a = 16; b = -236; c = +358;
Δ = b2-4ac
Δ = -2362-4·16·358
Δ = 32784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32784}=\sqrt{16*2049}=\sqrt{16}*\sqrt{2049}=4\sqrt{2049}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-236)-4\sqrt{2049}}{2*16}=\frac{236-4\sqrt{2049}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-236)+4\sqrt{2049}}{2*16}=\frac{236+4\sqrt{2049}}{32} $
| -133=-3(1-8x)+2x | | 6-5x-2=8x-6-3 | | 125=-7(1+5p)-8 | | 7x-35x^2=0 | | 4(x+8)-7=15 | | -2(5-8v)+12=-54 | | 1/2y+2=1/4y+5 | | (3z/8)-(z/10)=4 | | 12x-3x+5=6x+4x-8 | | -4v-4v=16 | | -2/11r+2r=1/2r+29/2 | | -1÷8d+7=16 | | 3z/8-z/10=4 | | X+4i=O | | 82=2(1+3n)+4n | | y^2-12y+10=0 | | (2+2)(x-2)=(x+3)(x-3) | | 4(x-1)=6x+12 | | 4(2x-3)-3(2+x)=2(x-6 | | 9a+2=2- | | 5-6n=-39 | | 21=-8+6n-1 | | 5/8x+1/2=3/8x-1/4 | | 18y=3/4*120y | | 79=9-7w | | 5/8×+1/5x=66 | | 6/3c=20/10 | | 3x+4(x+2)=2x+3(x+4) | | 7-x=-5x+1 | | (x-2)(x-2)=(x+3)(x-3) | | x=x=10=x=5 | | 2/3w+1=5/6w+1.5 |